Where do the particles go?

Did you ever rub a balloon on your hair and stick it to the ceiling? The balloon sticks because you’ve created static electricity on the surface of the balloon. This energy is non-moving static charge. Every material is made up of atoms and they are the basic building blocks of ordinary matter and they can join to form molecules, which is a basic ingredient of most of the objects around us. An atom can hold a positive charge that is called a proton or a negative charge that is called an electron. Atoms with the same charge or polarity repel each other, while those with the opposite charge are attracted to each other. Just like the balloon scenario, static is created by the contact and separation of two materials. The same is true of when you walk across a carpet and touch the metal door knob and get a shock. We call these electrostatic forces, tribo-charging, which renders a plastic material in a state where it can attract dust and other particulates.

Let’s face it, we are using more plastic in our every day lives, from cars to single use medical devices that may end up inside of the human body. Plastic, being highly insulative, can store huge amounts of static electricity. If we just look at the medical device sector, one of the biggest reasons for rejects, rework and potential device failure, is from foreign particles that end up in the finished device. These particles could be in the form of airborne contaminants, plastic flash, skin flake, human hair and other debris that is found in the manufacturing process. Static eliminators in the form of ionizing air guns, nozzles and ionizing blowers are used to negate the ill effects of electrostatic forces that pull particles right out of the air and hold them to a device or components. The use of ionized air is absolutely a good practice, but the problem is “where do the particle go”? Typically, they hang around and end up on the work surface to be a source of re-contamination or the particles end up downstream on already cleaned products.

Enter the Particle Trap® 6000. The Particle Trap® 6000 (PT6000) is the solution to getting rid of particles in the assembly and packaging areas of the medical device manufacturing process. The PT6000 is a source capturing system with a HEPA filter on the exhaust. You can still use the conventional ionizing air blow-off devices, but when working in front of the opening of the PT6000, dislodged particles now are delivered through a pre-filter and then through the HEPA filter, ensuring only clean air is let back into the room. The PT6000 is used not only to clean medical components, but it is especially helpful when used at the packaging level, just prior to the heat sealing of a lid stock to the thermoformed tray. The same would be true for pouching of products such as a catheter on a die cut card being slid into a long plastic bag and then sealed at the end. Normally, most medical device manufacturers do a 100% inspection for foreign matter/particles inside of the seal trays. If a particle is discovered, the lid is ripped off, the product taken out, recleaned and then repackaged. This reject rate is also called the tear down rate, which translates into poor yields, time and money along with customer dissatisfaction, when a product gets through that is not totally cleaned.

Who would benefit from the Particle Trap® 6000? The Particle Trap® 6000 and its sister products, the PT Mini, Particle Trap® CUBE and Medical Cleaning Systems. While the medical device sector has endorsed these products, they also have application in the optics, food and electronics industries for the same reason why all companies are looking to lower their tear down rates, which translates to higher profits. If you want to learn more about how Particle Trap® products can help improve your process, please contact our technical sales team for more information.